Abstract

Semiconducting transition metal dichalchogenides (TMDs) are a family of van der Waals bonded materials that have recently received interest as alternative substrates to hexagonal boron nitride (hBN) for graphene, as well as for components in novel graphene-based device heterostructures. We elucidate the local structural and electronic properties of graphene on TMD heterostructures through scanning tunneling microscopy and spectroscopy measurements. We find that crystalline defects intrinsic to TMDs induce substantial electronic scattering and charge carrier density fluctuations in the graphene. These signatures of local disorder explain the significant degradation of graphene device mobilities using TMD substrates, particularly compared to similar graphene on hBN devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call