Abstract

The purpose of this investigation was to determine whether the passive range of motion at the finger joints is restricted more by intrinsic tissues (cross a single joint) or by extrinsic tissues (cross multiple joints). The passive moment at the metacarpophalangeal (MP) joint of the index finger was modeled as the sum of intrinsic and extrinsic components. The intrinsic component was modeled only as a function of MP joint angle. The extrinsic component was modeled as a function of MP joint angle and wrist angle. With the wrist fixed in seven different positions the passive moment at the MP joint of eight subjects was recorded as the finger was rotated through its range at a constant rate. The moment-angle data were fit by the model and the extrinsic and intrinsic components were calculated for a range of MP joint angles and wrist positions. With the MP joint near its extension limit, the median percent extrinsic contribution was 94% with the wrist extended 60° and 14% with the wrist flexed 60°. These percentages were 40 and 88%, respectively, with the MP joint near its flexion limit. Our findings indicate that at most wrist angles the extrinsic tissues offer greater restraint at the limits of MP joint extension and flexion than the intrinsic tissues. The intrinsic tissues predominate when the wrist is flexed or extended enough to slacken the extrinsic tissues. Additional characteristics of intrinsic and extrinsic tissues can be deduced by examining the parameter values calculated by the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.