Abstract

The purpose of this study is to provide an intravital noninvasive multiphoton microscopic platform for long-term ocular imaging in transgenic fluorescent mice with subcellular resolution. A multiphoton microscopic system with tunable laser output was employed. We designed a mouse holder incorporated with stereotaxic motorized stage for in vivo three-dimensional imaging of ocular surface in 3 transgenic mouse line with fluorescent protein (FP) expression to visualize distinct structures. With our imaging platform and the expression of FPs, we obtained the three-dimensional images across the whole cornea from epithelium to endothelium and in conjunctiva with subcellular resolution in vivo. Specified EGFP expression in corneal epithelium of K5-H2B-EGFP mice helped to identify both corneal and limbal epithelial cells while ubiquitous nuclear FP expression in R26R-GR mice allowed us to visualized nuclei of all cell types. Universal membrane-localized FP in mT/mG mice outlined all cell boundaries, nerve fibers, and capillaries. The simultaneously collected second harmonic generation signals from collagenous stroma provided architectural contrast. Time-lapsed recording enabled monitoring the mitotic activity of corneal epithelial cells and limbal epithelial cells. We developed an intravital multiphoton microscopic stereotaxic imaging platform and showed that, by incorporating FP-expressing transgenic mice, this platform enables in vivo 4-dimensional ophthalmic study at subcellular resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.