Abstract

Intravenously injected micro-particles become trapped within the pulmonary vasculature where they increase the resistance to blood flow and trigger pulmonary hypertension. We tested the hypothesis that i.v. micro-particle injections can be used to trigger acute (24 to 48 h) post-injection mortality in broilers having the most limited pulmonary vascular capacity, or ascites in broilers whose marginal cardiopulmonary capacity renders them susceptible to pulmonary hypertension syndrome (PHS). Progressive inflammation-associated responses were initiated within the lung parenchyma by 10 to 80 microm diameter dextran polymer (Sephadex) and 30 microm diameter cellulose micro-particles, leading to the scavenging of Sephadex micro-particles from the pulmonary vasculature by <5 d post-injection, whereas the cellulose micro-particles persisted for >7 d post-injection. The persistency and size of the cellulose apparently facilitated chronic occlusion of blood flow through precapillary arterioles, thereby triggering appreciable post-injection mortality and PHS at relatively low injection volumes (0.3 to 0.6 mL at 0.02 g/mL). In contrast, the small size of the polystyrene microspheres (15 microm), and the lack of persistency of the Sephadex micro-particles, apparently precluded the reliable occurrence of post-injection mortality or PHS until higher volumes (>0.8 mL at 0.02 g/mL) were injected. Values for the total susceptibility index (TSI: 24 to 48 h post-injection mortality + PHS mortality) following cellulose injections were higher for broilers reared at cool temperatures than at thermoneutral temperatures. The incidences of PHS induced by exposing broilers from different genetic lines to constant cool temperatures qualitatively paralleled the respective post-injection mortalities elicited by injecting the cellulose micro-particle suspension into the same lines. These observations indicate the micro-particle injection methodology potentially can replace unilateral pulmonary artery occlusion as the technique of choice for genetically selecting broilers that have a sufficiently robust pulmonary vascular capacity to resist the onset of pulmonary hypertension and PHS. The functional importance of the relative antigenicity of different micro-particle types, and the extent to which key immune-mediated responses, either beneficial or detrimental, might be co-selected by the micro-particle injection technology, remain to be clarified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.