Abstract

This is the first study to investigate intravenous (i.v.) laser blood irradiation, interstitial (i.st.) laser acupuncture, and electroacupuncture (EA) in combination with heart rate variability (HRV) and electrocorticogram. We investigated 10 male anesthetized Sprague-Dawley rats under the three conditions mentioned previously in Beijing, China, and data analysis was performed in Graz, Europe. For i.v. laser stimulation in the femoral vein and i.st. laser acupuncture at Neiguan (PC6), we used a European system (Modulas needle, Schwa-Medico, Germany; 658 nm, 50 mW, continuous wave mode), and for EA at Neiguan, a Chinese system (Hanshi-100A; Nanjing Jisheng Medical Technology Company, China; 15 Hz, 1 mA). HR, HRV, and electrocorticogram were recorded using a biophysical amplifier AVB-10 (Nihon-Kohden, Japan). HR changed significantly during i.st. laser acupuncture stimulation of Neiguan in anesthetized rats. Total HRV increased insignificantly during i.v. and i.st. laser stimulation. The LF/HF ratio showed significant changes only during i.v. laser blood irradiation. Integrated cortical EEG (electrocorticogram) decreased insignificantly during EA and i.v. laser blood irradiation. Further studies concerning dosage-dependent alterations are in progress.

Highlights

  • Intravenous (i.v.) laser blood irradiation was accomplished for the first time approximately 25 years ago in the former Soviet Union [1,2,3]

  • For the ECG, we evaluated heart rate (HR), heart rate variability (HRV), and the LF/HF ratio of HRV

  • We did not find a publication in PubMed concerning “HRV and i.v. laser blood irradiation” or “electrocorticogram and i.v. laser blood irradiation.”

Read more

Summary

Introduction

Intravenous (i.v.) laser blood irradiation was accomplished for the first time approximately 25 years ago in the former Soviet Union [1,2,3]. Laser light was brought directly into the blood stream through a one-way catheter. In vitro tests showed that biological soft laser irradiation of white blood cells caused various positive effects, in particular expression of immunoglobulins, interferons, and interleukins. A new technique, percutaneous interstitial (i.st.) laser therapy (using a sterile catheter), allows penetration of laser light into deeper tissues for successful treatment of, for example, herniated disks or spinal stenosis [7]. With this technique, it is possible to irradiate the inside of damaged joints directly, which can lead to better therapeutic results [7]. It offers the option to treat tumors with combined photodynamic therapy [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call