Abstract

In utero transplantation (IUT) is a unique and versatile mode of therapy that can be used to introduce stem cells, viral vectors, or any other substances early in the gestation. The rationale behind IUT for therapeutic purposes is based on the small size of the fetus, the fetal immunologic immaturity, the accessibility and proliferative nature of the fetal stem or progenitor cells, and the potential to treat a disease or the onset of symptoms prior to birth. Taking advantage of these normal developmental properties of the fetus, the delivery of hematopoietic stem cells (HSC) via an IUT has the potential to treat congenital hematologic disorders such as sickle cell disease, without the required myeloablative or immunosuppressive conditioning required for postnatal HSC transplants. Similarly, the accessibility of progenitor cells in multiple organs during development potentially allows for a more efficient targeting of stem/progenitor cells following an IUT of viral vectors for gene therapy or genome editing. Additionally, IUT can be used to study normal developmental processes including, but not limited to, the development of immunologic tolerance. The murine model provides a valuable and affordable means to understanding the potential and limitations of IUT prior to pre-clinical large animal studies and an eventual clinical application. Here, we describe a protocol for performing an IUT in the murine fetus through intravenous and intra-amniotic routes. This protocol has been used successfully to elucidate the necessary conditions and mechanisms behind in utero hematopoietic stem cell transplantation, tolerance induction, and in utero gene therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call