Abstract
Effects of intrauterine hypoxia-ischemia (HI) on receptor-stimulated phosphoinositide (PPI) hydrolysis were studied in rat cerebellar granule cell cultures prepared from an in utero HI model. On gestation day 17, HI conditions were achieved by complete clamping of the uterine vasculature for 30 min followed by removal of the clamps to permit reperfusion. Sham operation (SH, surgery without vasculature ligation) was performed as the control. Intrauterine HI did not affect the basal level of PPI hydrolysis (in the absence of stimulants) in cells prepared from either the SH or the HI group. PPI hydrolysis stimulated by quisqualate (QA) or trans-(1 S,3 R)-1-amino-1,3-cyclopentanedicarboxylic acid ( trans-ACPD) was significantly reduced in cells prepared from the HI group, whereas intrauterine HI did not affect the PPI hydrolysis induced by ionotropic glutamate receptor agonists or by norepinephrine or serotonin. At a dose range of 100–300 μM, QA-stimulated PPI hydrolysis in cells prepared from the SH group increased by 3- to 4.5-fold, while this increase was only 2- to 2.5-fold in cells prepared from the HI group. Presence of l- N G-monomethyl-arginine ( l-NMMA), a nitric oxide (NO) synthase inhibitor, did not increase QA-stimulated PPI hydrolysis in cells prepared from either the SH or the HI group, indicating that stimulation of NO formation is unlikely involved in the suppressive effects of intrauterine HI on QA-induced PPI hydrolysis. The QA-stimulated PPI hydrolysis in cells prepared from the HI group, but not from the SH group, was further inhibited by l-(+)-2-amino-3-phosphonopropionic acid ( l-AP3). The overall results suggest that intrauterine HI has long-lasting suppressive effects on metabotropic glutamate receptor agonist-stimulated PPI hydrolysis and these effects might be associated with alterations in expression of metabotropic glutamate receptor subtypes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have