Abstract

Despite massive research efforts, the exact pathogenesis and pathophysiology of psychiatric disorders, such as schizophrenia and bipolar disorder, remain largely unknown. Animal models can serve as essential tools for investigating the etiology and treatment of such disorders. Some mutant mouse strains were found to exhibit behavioral abnormalities reminiscent of human psychiatric disorders. Here we outline our unique approach of extrapolating findings in mice to humans, and present studies on alpha-CaMKII heterozygous knockout (alpha-CaMKII+/-) mice as examples. Alpha-CaMKII+/- mice have profoundly dysregulated behavior and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. By conducting a series of experiments, we discovered that almost all the neurons in the mutant DG were very similar to the immature DG neurons of normal rodents. In other words, alpha-CaMKII+/- mice have an "immature DG". We proposed that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders. The impact of a large-scale mouse phenotyping on studies of psychiatric disorders and the potential utility of an "animal-model-array" of psychiatric disorders for the development of suitable therapeutic agents is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.