Abstract
The aim of this study is to determine intratumoral habitat regions from multi-sequences magnetic resonance imaging (MRI) and to assess the value of those regions for prediction of patient response to neoadjuvant chemotherapy (NAC) in nasopharyngeal carcinoma (NPC). Two hundred and ninety seven patients with NPC were enrolled. Multi-sequences MRI data were used to outline three-dimensional volumes of interest (VOI) of the whole tumor. The original imaging data were divided into two groups, which were resampled to an isotropic resolution of 1 × 1 × 1mm3 (group_1mm) and 3 × 3 × 3mm3 (group_3mm). Nineteen radiomics features were computed for each voxel of three sequences in group_3mm, within the tumor region to extract local information. Then, k-means clustering was implemented to segment the whole tumor regions in two groups. After radiomics features were extracted and dimension reduction, habitat models were built using Multi-Layer Perceptron (MLP) algorithm. Only T stage was included as the clinical model. The habitat3mm model, which included 10 radiomics features, achieved AUCs of 0.752 and 0.724 in the training and validation cohorts, respectively. Given the slightly better outcome of habitat3mm model, nomogram was developed in combination with habitat3mm model and T stage with the AUC of 0.749 and 0.738 in the training and validation cohorts. The decision curve analysis provides further evidence of the nomogram's clinical practicality. A nomogram based on intratumoral habitat predicts the efficacy of NAC in NPC patients, offering the potential to improve both the treatment plan and patient outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have