Abstract

Breast cancer is a highly heterogeneous disease both biologically and clinically, and certain pathologic parameters, i.e., Ki67 expression, are useful in predicting the prognosis of patients. The aim of the study is to identify intratumor heterogeneity of breast cancer for predicting Ki-67 proliferation status in estrogen receptor (ER)-positive breast cancer patients. A dataset of 77 patients was collected who underwent dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) examination. Of these patients, 51 were high-Ki-67 expression and 26 were low-Ki-67 expression. We partitioned the breast tumor into subregions using two methods based on the values of time to peak (TTP) and peak enhancement rate (PER). Within each tumor subregion, image features were extracted including statistical and morphological features from DCE-MRI. The classification models were applied on each region separately to assess whether the classifiers based on features extracted from various subregions features could have different performance for prediction. An area under a receiver operating characteristic curve (AUC) was computed using leave-one-out cross-validation (LOOCV) method. The classifier using features related with moderate time to peak achieved best performance with AUC of 0.826 than that based on the other regions. While using multi-classifier fusion method, the AUC value was significantly (Pe0.03) increased to 0.858±0.032 compare to classifier with AUC of 0.778 using features from the entire tumor. The results demonstrated that features reflect heterogeneity in intratumoral subregions can improve the classifier performance to predict the Ki-67 proliferation status than the classifier using features from entire tumor alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.