Abstract

Guanidinoacetate methyltransferase deficiency (GAMT deficiency) is an inherited neurometabolic disorder clinically characterized by epilepsy and mental retardation and biochemically by accumulation of guanidinoacetate (GAA) and depletion of creatine. Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are not yet established. In the present study, we investigated the effect of intrastriatal administration of GAA on Na+, K+-ATPase activity, total (tCK), cytosolic (Cy-CK), and mitochondrial (Mi-CK) creatine kinase (CK) activities in rat striatum. We verified that Na+, K+-ATPase, tCK, and Mi-CK activities were significantly inhibited by GAA, in contrast to Cy-CK which was not affected by this guanidino compound. Since these enzyme activities can be affected by reactive species, we also investigated the effect of intrastriatal administration of GAA on thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation in rats. We found that this metabolite significantly increased this oxidative stress parameter. Considering the importance of Na+, K+-ATPase and CK activities for brain metabolism homeostasis, our results suggest that the inhibition of these enzymes by increased intracerebral levels of GAA may contribute to the neuropathology observed in patients with GAMT-deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.