Abstract
Abstract This study evaluates the intraseasonal variation of winter precipitation over the western United States in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of each model’s twentieth-century climate simulation are analyzed. The focus is on the two dominant intraseasonal modes for the western U.S. precipitation: the 40-day mode and the 22-day mode. The results show that the models tend to overestimate the northern winter (November–April) seasonal mean precipitation over the western United States and Canada. The models also tend to produce overly strong intraseasonal variability in western U.S. wintertime precipitation, in spite of the overly weak tropical intraseasonal variability in most of the models. All models capture both the 40-day mode and the 22-day mode, usually with overly large variances. For the 40-day mode, models tend to reproduce its deep barotropic vertical structure and three-cell horizontal structure, but only 5 of the 14 models capture its northward propagation, and only 2 models simulate its teleconnection with the Madden–Julian oscillation in the tropical Pacific. For the 22-day mode, 8 of the 14 models reproduce its coherent northward propagation, and 9 models capture its teleconnection with precipitation in the tropical Pacific.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.