Abstract

A remarkable intraseasonal reversal of temperature anomaly is witnessed in eastern China in early 2022, characterized by a warm January and a cold February. ERA5 daily reanalysis data, multiple regression and the Linear Baroclinic Model (LBM) are employed to investigate the characteristics and causes of this abnormal temperature Pattern. The findings indicate that: (1) The two Rossby wave trains along the south and north westerly jets over Eurasia have synergistic impacts on middle and high latitudes. In January, the south branch Rossby wave train exhibited a positive phase, coinciding with a negative phase in the north branch wave train. As a result, the south trough strengthens, while the north trough weakens, leading to anomalous warm advection that warms eastern China. In February, the phases of these two Rossby waves are reversed, causing anomalous cold advection as the southern trough diminishes and the northern trough intensifies, resulting in colder conditions in eastern China. (2) Tropical convection activity weakens in January, whereas it intensifies in February in the northeast Indian Ocean. The weakening of the East Asian trough as a result of the convective latent heat anomalies caused an anticyclonic circulation over the Korean Peninsula in January through the Pacific-Japan teleconnection-like pattern, which is necessary for the maintenance of warm anomalies. Conversely, increased convective activity in February induces cyclonic circulation, deepening the East Asian trough over the Korean Peninsula and contributing to the persistence of cold anomalies. (3) The Rossby wave trains along the two westerly jets and the tropical convective activity in the northeastern Indian Ocean work in tandem, simultaneously strengthening or weakening the East Asian trough. Consequently, the East Asian trough weakens in January and strengthens in February.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.