Abstract

Nest survival may vary throughout the breeding season for many bird species, and the nature of this temporal variation can reveal the links between birds, their predators, and other components of the ecosystem. We used program Mark to model patterns in nest survival within the breeding season for shorebirds nesting on arctic tundra. From 2000 to 2007, we monitored 521 nests of five shorebird species and found strong evidence for variation in nest survival within a nesting season. Daily nest survival was lowest in the mid-season in 5 of 8 years, but the timing and magnitude of the lows varied. We found no evidence that this quadratic time effect was driven by seasonal changes in weather or the abundance of predators. Contrary to our prediction, the risk of predation was not greatest when the number of active shorebird nests was highest. Although nest abundance reached a maximum near the middle of the breeding season, a daily index of shorebird nest activity was not supported as a predictor of nest survival in the models. Predators' access to other diet items, in addition to shorebird nests, may instead determine the temporal patterns of nest predation. Nest survival also displayed a positive, linear relationship with nest age; however, this effect was most pronounced among species with biparental incubation. Among biparental species, parents defended older nests with greater intensity. We did not detect a similar relationship among uniparental species, and conclude that the stronger relationship between nest age and both nest defence and nest survival for biparental species reflects that their nest defence is more effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call