Abstract

AbstractThe abundant surface solar radiation (SSR) over South‐West Indian Ocean (SWIO) presents significant temporal variability. To characterize this temporal variability is important for the application of solar energy, such as photovoltaic industry. This article studied the intraseasonal and synoptic climate variability of SSR by regional climate modelling over SWIO region. The regional climate model, RegCM4's skill is first evaluated through analysing the seasonal mean SSR with the precipitation, near surface temperature and total cloud cover in austral summer and winter. The basic validation of those simulated parameters with the reference data showed model's performance on SSR. The austral summer (November–February) 1999–2008 was chosen to search the Madden–Julian Oscillation patterns and tropical temperate troughs which are the major expression of intraseasonal and synoptic climate variability. The circulation, moisture fluxes, and radiation fluxes have been checked at the beginning for RegCM4's input dataset (ERA‐Interim) to find the signals. Then, the output simulation results were taking into account to see if the model can reproduce the intraseasonal and synoptic climate variability or not. SSR from SARAH‐E (CM SAF@5 km) as the reference dataset in the end has been used to validate the simulated patterns, which showed that the eastward SSR anomalies propagation and negative SSR anomalies bands can be observed in RegCM4 and the according satellite dataset. These results identified and explained SSR's intraseasonal and synoptic climate variability over SWIO region, which provide a way through RegCM to perform SSR's evaluation and prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call