Abstract

Understanding the space-time variability of Surface Solar Radiation (SSR) is mandatory for the prediction and, eventually, the skillful forecasting of photovoltaic energy production. This paper addresses the modulation of local-scale SSR over Reunion, a tropical island in the South-West Indian Ocean, by the leading modes of climate variability influencing both regional-scale and local-scale atmospheric convection and its associated cloud cover. Analyses focus on synoptic (tropical cyclones [TCs], synoptic convective regimes, including Tropical-Temperate Troughs [TTTs]) and intraseasonal (Madden-Julian Oscillation [MJO]) timescales. The SSR intra-daily variability is first assessed by a diurnal classification of SARAH-E satellite SSR data, and it is then related to the climate conditions mentioned above. SSR anomalies are found larger (smaller) on the windward (leeward) side of Reunion and in the summer (winter) season. The island-scale “cloudy” conditions can typically last 1 or 2 days. Nearby TCs can strongly reduce SSR by up to 50% on average, depending on their distances from Reunion, their sizes, and particularly, their longitudinal positions, which is observed for the first time. Nearby TCs are associated with significant negative SSR anomaly when located west of Reunion but with less significant or even positive anomaly when located east of the island. Synoptic convective regimes (the intraseasonal MJO) have a relatively weaker impact on SSR, with a value up to 13% (5%) of the mean value. Potential interactions between these SSR modulators are also investigated to understand better and eventually predict the mechanisms likely to modulate SSR (and thus photovoltaic electricity production) at sub-seasonal timescales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.