Abstract
BackgroundIntraparenchymal cerebral cavernous malformation is difficult to localize intraoperatively with conventional frameless navigation due to the “brain shift” effect. We conducted this study to evaluate the efficacy and safety of intraoperative magnetic resonance image (iMRI)-assisted neuro-port surgery for the resection of cerebral intraparenchymal cavernous malformation.MethodsBetween April 2016 and December 2017, 54 consecutive patients with intraparenchymal cerebral cavernous malformation who get surgical treatment in our hospital were enrolled into this study. Twenty-one patients were treated using iMRI-assisted neuro-port surgery (experiment group), and 33 patients underwent treatment by conventional microsurgery (control group). The iMRI was used in all cases for the compensation of the “brain shift” effect and keeping the navigation system up-to-date. The surgical resection rate, the total operation time, and the preoperative and postoperative Karnofsky Performance Status (KPS) scores were determined to evaluate the operative procedures.ResultsThere were no significant differences between the two groups in mean age, gender ratio, and volume of lesions (P > 0.05). For the experiment group, the average duration of the procedure was 188.8 min with total resection of the lesions achieved in all 21 cases. For the control group, the average duration of the procedure was 238.2 min with total resection of the lesions achieved in 25 of 33 cases. The differences in the average duration of the procedure and the number of totally resected lesions between the two groups were statistically significant (P < 0.05). Regarding postoperative neurological function, postoperative KPS scores for the experiment group were significantly higher than those of the control group (P = 0.018).ConclusionOur results show that iMRI-assisted neuro-port surgery is helpful for intraparenchymal cerebral cavernous malformation surgery. The method provides high accuracy and efficiency for lesion targeting and permits excellent anatomic orientation. With the assistance of iMRI technology, we achieved a higher resection rate and a lower incidence of postoperative neurological deficits. Additionally, iMRI is helpful for the compensation of the “brain shift” effect, and it can update the navigation system.
Highlights
Intraparenchymal cerebral cavernous malformation is difficult to localize intraoperatively with conventional frameless navigation due to the “brain shift” effect
The surgery should pursue the total resection of the Cavernous malformation (CM), the glial scar layer, and the hemosiderin layer around the lesion in order to eliminate or alleviate the symptoms of the patient, further improve the symptoms, and further improve the quality of life [5, 6]
We present our initial experience with the intraoperative magnetic resonance image (iMRI)-assisted neuro-port technique to treat cerebral intraparenchymal CMs, focusing on the outcome of this surgical approach
Summary
Intraparenchymal cerebral cavernous malformation is difficult to localize intraoperatively with conventional frameless navigation due to the “brain shift” effect. Cavernous malformations (CMs) of the brain are vascular malformations with an estimated prevalence between 0.4 and 0.9% [1], appearing mainly as singular supratentorial lesions [2]. These lesions are made up of clusters of deformed vessels, lined by endothelium, and filled with blood at various stages of thrombosis. The surgery should pursue the total resection of the CMs, the glial scar layer, and the hemosiderin layer around the lesion in order to eliminate or alleviate the symptoms of the patient, further improve the symptoms, and further improve the quality of life [5, 6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have