Abstract

The intranasal route of administration allows large therapeutics to circumvent the blood–brain barrier and be delivered directly to the CNS. Here we examined the distribution and pattern of cellular transfection, and the time course of transgene expression, in the rat brain after intranasal delivery of plasmid DNA nanoparticles (NPs) encoding hGDNF fused with eGFP. Intranasal administration of these NPs resulted in transfection and transgene expression throughout the rat brain, as indicated by eGFP ELISA and eGFP-positive cell counts. Most of the transfected cells were abluminal and immediately adjacent to capillaries and are likely pericytes, consistent with their distribution by perivascular transport. Intranasal administration of these plasmid DNA NPs resulted in significant, long-term transgene expression in rat brain, with highest levels at 1 week and continued expression for 6 months. These results provide evidence in support of intranasal DNA NPs as a non-invasive, long-term gene therapy approach for various CNS disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call