Abstract

Brucellosis, a zoonotic infectious disease, is a worldwide health issue affecting animals and humans. No effective human vaccine and the complications caused by the use of animal vaccines are among the factors that have prevented the eradication of the disease worldwide. However, bio-engineering technologies have paved the way for designing new targeted and highly efficacious vaccines. In this regard, the study aimed to evaluate immunity induced by mannosylated niosome containing Brucella recombinant trigger factor/Bp26/Omp31 (rTBO) chimeric protein in a mouse model. rTBO as chimeric antigen (Ag) was expressed in Escherichia coli BL21 (DE3) and, after purification, loaded on niosome and mannosylated niosome. The characteristics of the nanoparticles were assessed. The mice were immunized using rTBO, niosome, and mannosylated niosome-rTBO in intranasal and intraperitoneal routes. Serum antibodies (immunoglobulin [Ig]A, IgG, IgG1, and IgG2a) and splenocyte cytokines (interferon-gamma, interleukin [IL]-4, and IL-12) were evaluated in immunized mice. Finally, immunized mice were challenged by B. melitensis and B. abortus. A high antibody level was produced by niosomal antigen (Nio-Ag) and mannosylated noisomal antigen (Nio-Man-Ag) compared to the control after 10, 24, and 38 days of immunization. The IgG2a/IgG1 titer ratio for Nio-Man-Ag was 1.2 and 1.1 in intraperitoneal and intranasal methods and lower than one in free Ag and Nio-Ag. Cytokine production was significantly higher in the immunized animal with Ag-loaded nanoparticles than in the negative control group (p<0.05). Moreover, cytokine and antibody levels were significantly higher in the injection than in the inhalation method (p<0.05). The combination of mannosylated noisome and rTBO chimeric proteins stimulate the cellular and humoral immune response and produce cytokines, playing a role in developing the protective acquired immune response in the Brucella infectious model. Also, the intraperitoneal route resulted in a successful enhancement of cytokines production more than intranasal administration. Designing an effective vaccine candidate against Brucella that selectively induces cellular and humoral immune response can be done by selecting a suitable nanoniosome formulation as an immunoadjuvant and recombinant protein as an immune response-stimulating Ag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.