Abstract
We evaluate the accuracy of a vascular segmentation algorithm which uses continuity in the maximum intensity projection (MIP) depth Z-buffer as a pre-processing step to generate a list of 3D seed points for further segmentation. We refer to the algorithm as Z-buffer segmentation (ZBS). The pre-processing of the MIP Z-buffer is based on smoothness measured using the minimum χ 2 value of a least square fit. Points in the Z-buffer with χ 2 values below a selected threshold are used as seed points for 3D region growing. The ZBS algorithm couples spatial continuity information with intensity information to create a simple yet accurate segmentation algorithm. We examine the dependence of the segmentation on various parameters of the algorithm. Performance is assessed in terms of the inclusion/exclusion of vessel/background voxels in the segmentation of intracranial time-of-flight MRA images. The evaluation is based on 490,256 voxels from 14 patients which were classified by an observer. ZBS performance was compared to simple thresholding and to segmentation based on vessel enhancement filtering. The ZBS segmentation was only weakly dependent on the parameters of the initial MIP image generation, indicating the robustness of this approach. Region growing based on Z-buffer generated seeds was advantageous compared to simple thresholding. The ZBS algorithm provided segmentation accuracies similar to that obtained with the vessel enhancement filter. The ZBS performance was notably better than the filter based segmentation for aneurysms where the assumptions of the filter were violated. As currently implemented the algorithm slightly under-segments the intracranial vasculature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.