Abstract
The cranial meninges of reptiles differ from the more widely studied mammalian pattern in that the intraventricular and subarachnoid spaces are, at least partially, isolated. This study was undertaken to investigate the bulk flow of cerebrospinal fluid, and the resulting changes in intracranial pressure, in a common reptilian species. Intracranial pressure was measured using ocular ultrasonography and by surgically implanting pressure cannulae into the cranial subarachnoid space. The system was then challenged by: rotating the animal to create orthostatic gradients, perturbation of the vascular system, administration of epinephrine, and cephalic cutaneous heating. Pressure changes determined from the implanted catheters and through quantification of the optic nerve sheath were highly correlated and showed a significant linear relationship with orthostatic gradients. The catheter pressure responses were phasic, with an initial rapid response followed by a much slower response; each phase accounted for roughly half of the total pressure change. No significant relationship was found between intracranial pressure and either heart rate or blood flow. The focal application of heat and the administration of epinephrine both increased intracranial pressure, the latter influence being particularly pronounced.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have