Abstract

Abstract In the orogenic belts of the Central Asian Orogenic Belt (CAOB), many mafic and felsic plutons are temporally and spatially associated with orogen-scale strike-slip faults. The CAOB is a huge and complex orogenic collage of accreted terranes that was formed in the Early to Mid-Palaeozoic. In the CAOB, orogen-scale strike-slip faults extend for 100–1000 s of kilometres marking the boundaries of tectonic units and terranes. I use examples from southern Siberia and NW China to illustrate the important role that strike-slip faults have in localising intraplate magmatism and associated metallogeny. Cases from the Altay-Sayan in southern Siberia, the Altay and Tianshan orogens in NW China, are compelling for providing good evidence of the control that strike-slip structures exert for the emplacement of magmas and related mineral systems. These strike-slip faults controlled the emplacement of mafic-ultramafic intrusions, alkaline mafic and felsic magmatism in the period 280–240 Ma, which coincides with mantle plume(s) activity that led to the emplacement of the Tarim and Siberian large igneous provinces (LIPs). Mineral systems that are associated with these LIPs include magmatic Ni-Cu in sill-like intrusions, concentrically zoned mafic-ultramafic intrusions (e.g. Kalatongke, the second largest Ni-Cu sulphide deposit in China, after Jinchuan), epithermal systems, breccia pipes, polymetallic hydrothermal veins, granitoid-related greisen and rare earth pegmatites, as well as kimberlite fields. In the Altay-Sayan and NW China regions, orogen-scale translithospheric strike-slip faults provided the channels for the emplacement of magmas, resulting from lateral flow of mantle melts along the base of the lithosphere. This lateral flow is interpreted to have resulted from the impingement of mantle plumes to the base of the lithosphere of what was, to all intents and purposes, a stationary plate. Lateral flow from mantle plumes head was sustained or facilitated, during stages of extension and movements along orogen-scale strike-slip faults. In the Altay-Sayan and NW China, decompression melting of the mantle material produced mafic-ultramafic magmas that were emplaced along the comparatively narrow conduits of the strike-slip zones, forming concentrically zoned complexes that locally, where favourable conditions allowed it (e.g. crustal contamination), host magmatic Ni-Cu sulphides. Flow of mantle melts into translithospheric strike-slip structures also caused partial melting of a thinned and metasomatised lithosphere, resulting in alkaline magmatic products and a wide range of related mineral systems, from polymetallic veins to greisens. Partial melting of the lower crust also produced A-type granitic magmas that locally vented to the surface, forming calderas hosting epithermal and porphyry systems, as observed in NW China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call