Abstract

BackgroundUnder bone conduction (BC) stimulation, the otic capsule, and surrounding temporal bone, undergoes a complex 3-dimentional (3D) motion that depends on the frequency, location and coupling of the stimulation. The correlation between the resultant intracochlear pressure difference across the cochlear partition and the 3D motion of the otic capsule is not yet known and is to be investigated. MethodsExperiments were conducted in 3 fresh frozen cadaver heads, individually on each temporal bone, resulting in a total of 6 samples. The skull bone was stimulated, via the actuator of a BC hearing aid (BCHA), in the frequency range of 0.1–20 kHz. Stimulation was applied at the ipsilateral mastoid and the classical BAHA location via a conventional transcutaneous (5-N steel headband) and percutaneous coupling, sequentially. Three-dimensional motions were measured across the lateral and medial (intracranial) surfaces of the skull, the ipsilateral temporal bone, the skull base, as well as the promontory and stapes. Each measurement consisted of 130–200 measurement points (∼5–10 mm pitch) across the measured skull surface. Additionally, intracochlear pressure in the scala tympani and scala vestibuli was measured via a custom-made intracochlear acoustic receiver. ResultsWhile there were limited differences in the magnitude of the motion across the skull base, there were major differences in the deformation of different sections of the skull. Specifically, the bone near the otic capsule remained primarily rigid across all test frequency (above 10 kHz), in contrast to the skull base, which deformed above 1-2 kHz. Above 1 kHz, the ratio, between the differential intracochlear pressure and the promontory motion, was relatively independent of coupling and stimulation location. Similarly, the stimulation direction appears to have no influence on the cochlear response, above 1 kHz. ConclusionsThe area around the otic capsule appears rigid up to significantly higher frequencies than the rest of the skull surface, resulting in primarily inertial loading of the cochlear fluid. Further work should be focused at the investigation of the solid-fluid interaction between the bony walls of the otic capsule and the cochlear contents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call