Abstract

We have investigated the metabolism and intracellular translocation of a fluorescent derivative of phosphatidic acid, 1-acyl-2-[(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl] phosphatidic acid (C6-NBD-PA), and its metabolites, in Chinese hamster fibroblasts. This derivative is rapidly transferred from phospholipid vesicles to cells at 2 degrees C, and results in fluorescent labeling of the mitochondria, endoplasmic reticulum, and nuclear membrane of intact cells during its metabolism predominantly to fluorescent diglyceride (Pagano, R. E., Longmuir, K. J., Martin, O. C., and Struck, D. K. (1981) J. Cell Biol. 91, 872-877). In the present study, we show that, upon warming to 37 degrees C, the fluorescence associated with the endoplasmic reticulum was greatly reduced, while cytoplasmic lipid droplets, which were initially nonfluorescent, became intensely labeled. This altered intracellular distribution of fluorescence was accompanied by further metabolism of the fluorescent lipids to NBD-triglyceride and NBD-phosphatidylcholine. Although NBD-fatty acid was also produced, it was not re-utilized in the synthesis of other cellular lipids. Subcellular fractionation experiments demonstrated that primarily NBD-labeled triglyceride was associated with the intracellular lipid droplets, although substantial amounts of NBD-labeled phosphatidic acid, phosphatidylcholine, and diglyceride were also present in the whole cell extracts. This finding was confirmed in a separate experiment in which the fluorescent lipids associated with the intracellular lipid droplets were selectively and irreversibly photobleached in situ. Extraction and analysis of the fluorescent lipids revealed that NBD-triglyceride was preferentially photobleached. These results indicate that "sorting" of the NBD-labeled lipids into various cytoplasmic compartments accompanied their metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.