Abstract

Intracellular recordings were made from antidromically identified pectoral fin motoneurons in unanesthetized, decerebrate stingrays (Dasyatis sabina). These recordings had the three all-or-none components seen in other vertebrate motoneuron recordings. About 25% of the impalements had resting membrane potentials that were greater than -80 mV, which is larger than those of motoneurons from other vertebrate species. A novel depolarizing afterpotential (DAP) is associated with the isolated action potential occurring at the first node of Ranvier of the axon (M-spike). Occlusion experiments exclude recurrent events as the source of this potential. A capacitive source for the DAP is postulated. Using morphological and passive electrical data on motoneurons from previous studies, calculations of the passive decay of the nodal spike indicate that the membrane resistance of the initial segment is low and nearly equal to that of nodal membrane. The soma-dendritic (SD) spike is followed by a prominent, humped delayed depolarization (DD). The DD is temporally associated with the onset of the action potential produced by the initial segment (IS spike). Sources of the long-lasting period of repolarization recorded with the IS spike, which may underlie the DD, are postulated. The afterhyperpolarization (AHP) of stingray motoneurons tends to be shorter and smaller in amplitude than that of other vertebrate motoneurons. A negligible conductance change was often found during the period following an SD spike. No significant correlation was found between AHP duration and axonal conduction velocity. The input conductance of stingray motoneurons ranged between 1.5 X 10(-7) and 13.3 X 10(-7) S. The relationship between input conductance and axonal conduction velocity was determined from 42 motoneurons. These data were fitted by a power function with an exponent of 1.7, indicating that, in terms of membrane conductance properties, large stingray motoneurons are simply scaled-up versions of the small motoneurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.