Abstract

A number of studies suggest that early events in the maturation of amyloid precursor protein (APP) are important in determining its entry into one of several alternative processing pathways, one of which leads to the toxic protein β-amyloid (Aβ). In pulse-labeled APP expressing CHO cells two proteolytic systems can degrade newly translated APP: the proteosome and a cysteine protease. When N-glycosylation was inhibited by tunicamycin, the former system is the dominant mechanism of APP degradation. Without tunicamycin present, the cysteine protease is operational: cysteine protease inhibitors completely inhibit APP turnover in cells in which the secretory pathway is interrupted with brefeldin A or when α-secretase and endosomal degradation are also pharmacologically blocked. APP immunoprecipitated from cells extracted under mild conditions and labeled in the presence of tunicamycin exhibited greater sensitivity to endoproteinase glu-C (V8) or lys-C than from cells without drug. The V8 fragment missing in tunicamyin treated cells encompassed the KPI inhibitor insertion site but was distinct from the site of N-glycosylation. It is concluded that a conformational change caused by interrupted N-glycosylation shunts newly translated APP into the proteasomal degradation pathway. Pulse-labeled and chased cells showed an additional V8 fragment that was not present in pulsed-labeled cells and was not due to glycosylation since it was also present in cells labeled in the presence of brefeldin. This latter result indicates that an additional, delayed conformational alteration occurs in the endoplasmic reticulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.