Abstract
Few experimental models have been used to investigate how proteins fold inside a cell. Using the formation of disulfide bonds as an index of conformational changes during protein folding, we have developed a unique system to determine the intracellular folding pathway of the beta subunit of human chorionic gonadotropin (hCG). Three folding intermediates of the beta subunit were purified from [35S]cysteine-labeled JAR choriocarcinoma cells by immunoprecipitation and by reverse-phase high performance liquid chromatography (HPLC). To identify unformed disulfide bonds, nonreduced folding intermediates were treated with trypsin to liberate non-disulfide-bound, [35S]cysteine-containing peptides from the disulfide-linked peptides. Released peptides were purified by HPLC and identified by amino acid sequencing. The amount of a peptide that was released indicated the extent of disulfide bond formation involving the cysteine in that peptide. Of the six disulfide bonds in hCG-beta, bonds 34-88 and 38-57 form first. The rate-limiting event of folding involves the formation of the S-S bonds between cysteines 23 and 72 and cysteines 9 and 90. Disulfide bond 93-100, the formation of which appears to be necessary for assembly with the alpha subunit of the hCG heterodimer, forms next. Finally, disulfide bond 26-110 forms after assembly with the alpha subunit, suggesting that completion of folding of the COOH terminus in the beta subunit occurs after assembly with the alpha subunit.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have