Abstract

Background Electrophysiology (EP) studies can diagnose & treat patients with arrhythmia. MR-guided EP is growing, driven by the ability of cardiac MRI to provide high-contrast images. For intra-procedural use, MRI provides images of the acute state of radio-frequency ablation (RFA) lesions, e.g. necrosis, edema and hemorrhage, that potentially reduce recurrences & complications [1,2]. Unfortunately, acquisition of these images using surface MRI coils, considering the high-spatial-resolution (~1×1×2mm) requirements, can be lengthy (scar~10 mins/scan, edema~12 mins/scan) [3], severely increasing the duration of MR-guided procedures. As demonstrated in other body regions, e.g. endorectal MRI, and with other imaging modalities (Intra-Cardiac Echo), intracavitary probes provide increased Signal-to-Noise-Ratio (SNR), due to their proximity to the area of interest. An Intra-cardiac MR imaging (ICMRI) coil may provide substantially higher SNR, but a complete application must also provide accurate heart motion compensation [4], in order to produce non-blurred images. We constructed an ICMRI catheter, with integrated imaging & positional-tracking elements, optimized for (1) cardiovascular introduction as a sheath “riding on” an EP ablation catheter & for (2) close-proximity imaging (~4 cm FOV) during RFA delivery.

Highlights

  • Electrophysiology (EP) studies can diagnose & treat patients with arrhythmia

  • The Intra-cardiac MR imaging (ICMRI) catheter consists of a deployable imaging coil & 4 tracking micro-coils at the catheter tip

  • The imaging coil is folded during vascular navigation (4.5-mm diameter)

Read more

Summary

Background

MR-guided EP is growing, driven by the ability of cardiac MRI to provide high-contrast images. For intra-procedural use, MRI provides images of the acute state of radio-frequency ablation (RFA) lesions, e.g. necrosis, edema and hemorrhage, that potentially reduce recurrences & complications [1,2]. Acquisition of these images using surface MRI coils, considering the high-spatial-resolution (~1×1×2mm3) requirements, can be lengthy (scar~10 mins/scan, edema~12 mins/scan) [3], severely increasing the duration of MR-guided procedures. As demonstrated in other body regions, e.g. endorectal MRI, and with other imaging modalities (Intra-Cardiac Echo), intracavitary probes provide increased Signal-to-Noise-Ratio (SNR), due to their proximity to the area of interest. We constructed an ICMRI catheter, with integrated imaging & positional-tracking elements, optimized for (1) cardiovascular introduction as a sheath “riding on” an EP ablation catheter & for (2) close-proximity imaging (~4 cm FOV) during RFA delivery

Methods
Results
Conclusions
Schmidt
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.