Abstract

Rapid joint clearance of small molecule drugs is the major limitation of current clinical approaches to osteoarthritis and its subtypes, including post-traumatic osteoarthritis (PTOA). Particulate systems such as nano/microtechnology could provide a potential avenue for improved joint retention of small molecule drugs. One drug of interest for PTOA treatment is flavopiridol, which inhibits cyclin-dependent kinase 9 (CDK9). Herein, polylactide-co-glycolide microparticles encapsulating flavopiridol were formulated, characterized, and evaluated as a strategy to mitigate PTOA-associated inflammation through the inhibition of CDK9. Characterization of the microparticles, including the drug loading, hydrodynamic diameter, stability, and release profile was performed. The mean hydrodynamic diameter of flavopiridol particles was ∼15 µm, indicating good syringeability and low potential for phagocytosis. The microparticles showed no cytotoxicity in-vitro, and drug activity was maintained after encapsulation, even after prolonged exposure to high temperatures (60 °C). Flavopiridol-loaded microparticles or blank (unloaded) microparticles were administered by intraarticular injection in a rat knee injury model of PTOA. We observed significant joint retention of flavopiridol microparticles compared to the soluble flavopiridol, confirming the sustained release behavior of the particles. Matrix metalloprotease (MMP) activity, an indicator of joint inflammation, was significantly reduced by flavopiridol microparticles 3 days post-injury. Histopathological analysis showed that flavopiridol microparticles reduced PTOA severity 28 days post-injury. Taken altogether, this work demonstrates a promising biomaterial platform for sustained small molecule drug delivery to the joint space as a therapeutic measure for post-traumatic osteoarthritis. Statement of significancePost-traumatic osteoarthritis (PTOA) begins with the deterioration of subchondral bone and cartilage after acute injuries. In spite of the prevalence of PTOA and its associated financial and psychological burdens, therapeutic measures remain elusive. A number of small molecule drugs are now under investigation to replace FDA-approved palliative measures, including cyclin-dependent kinase 9 (CDK9) inhibitors which work by targeting early inflammatory programming after injury. However, the short half-life of these drugs is a major hurdle to their success. Here, we show that biomaterial encapsulation of Flavopiridol (CDK9 inhibitor) in poly (lactic-co-glycolic acid) microparticles is a promising route for direct delivery and improved drug retention time in the knee joint. Moreover, administration of the flavopiridol microparticles reduced the severity of PTOA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call