Abstract
Hypoxia-inducible factor-2α (Hif-2α) is a potential therapeutic target for osteoarthritis (OA), but the application of this target in the delivery of therapeutic agents to chondrocytes remains a challenge. A chondrocyte-targeting vector was constructed in a previous study to enhance transfection efficiency and specificity of chondrocytes in vivo. This study used vectors to deliver small-interfering RNA (siRNA) and silenced Hif-2α expression to prevent cartilage degeneration in OA-affected mice. After siRNA transfection was conducted by cartilage-targeting nanoparticles, the protein levels of Hif-2α, matrix metalloproteinases (MMP-13, -9), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4, -5), vascular endothelial growth factor (VEGF), type X collagen and nuclear factor (NF)-κB in interleukin-1-beta (IL-1β)-stimulated chondrocytes were determined. Chondrocyte-targeting ability was also determined by fluorescein isothiocyanate (FITC)-labeled siRNA tracking under a confocal microscope. OA model was established by surgically destabilizing the knee joints of a mouse. Hif-2α siRNA was then delivered intra-articularly with nanoparticles in vivo. Cartilage degeneration and synovium inflammation in the knee joints were analyzed by histomorphometry. IL-1β levels in the synovial fluid were also measured by enzyme-linked immunosorbent assay. In vitro assay results showed that catabolic factors, including Hif-2α, MMP-13 and -9, ADAMTS-4, VEGF, collagen type X and NF-κB, were downregulated after Hif-2α-siRNA transfection by chondrocyte-targeting nanoparticles. In vivo assay results with FITC-labeled siRNA tracking also confirmed that nanoparticles promoted the local concentration and prolonged the retention time of siRNA in the cartilage. Histological analysis results confirmed that nanoparticle-mediated siRNA maintained cartilage integrity and alleviated synovium inflammation. IL-1β levels decreased after siRNA was silenced by nanoparticles. Thus, chondrocyte-targeting nanoparticles could deliver Hif-2α siRNA to cartilage and specifically inhibit the expression of catabolic proteins.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have