Abstract

Necrotizing enterocolitis (NEC) is a complication of prematurity. The etiology is unknown, but is related to enteral feeding, ischemia, infection, and inflammation. Reactive oxygen species production, most notably superoxide, increases in NEC. NADPH oxidase (NOX) generates superoxide, but its activity in NEC remains unknown. We hypothesize that NOX-derived superoxide production increases in NEC. Newborn Sprague-Dawley rats were divided into control, formula-fed, formula/LPS, formula/hypoxia, and NEC (formula, hypoxia, and LPS). Intestinal homogenates were analyzed for NADPH-dependent superoxide production. Changes in superoxide levels on days 0-4 were measured. Inhibitors for nitric oxide synthase (L-NAME) and NOX2 (GP91-ds-tat) were utilized. RT-PCR for eNOS, NOX1, GP91phox expression was performed. Immunofluorescence studies estimated the co-localization of p47phox and GP91phox in control and NEC animals on D1, D2, and D4. NEC pups generated more superoxide than controls on D4, while all other groups were unchanged. NADPH-dependent superoxide production was greater in NEC on days 0, 3, and 4. GP91-ds-tat decreased superoxide production in both groups, with greater inhibition in NEC. L-NAME did not alter superoxide production. Temporally, superoxide production varied minimally in controls. In NEC, superoxide generation was decreased on day 1, but increased on days 3-4. GP91phox expression was higher in NEC on days 2 and 4. NOX1 and eNOS expression were unchanged from controls. GP91phox and p47phox had minimal co-localization in all control samples and NEC samples on D1 and D2, but had increased co-localization on D4. In conclusion, this study proves that experimentally-induced NEC increases small intestinal NOX activity. All components of NEC model are necessary for increased NOX activity. NOX2 is the major source, especially as the disease progresses.

Highlights

  • Necrotizing enterocolitis (NEC) is one of the most devastating diseases for premature infants

  • In order to confirm that small intestinal O2N– generation is via NADPH oxidase (NOX) and nitric oxide synthase (NOS), samples were analyzed in the presence or absence of NADPH as described above

  • The study was repeated with pups received formula (F), formula and hypoxia (F/H), and formula and LPS (F/LPS) (Fig. 2)

Read more

Summary

Introduction

Necrotizing enterocolitis (NEC) is one of the most devastating diseases for premature infants. The disease involves injury and death of the small intestines. NEC causes significant neonatal morbidity and mortality, and survivors encounter many long-term sequelae [1]. Years of investigation, the pathogenesis remains unclear. NEC is thought to be a multifactorial disease process [2]. Infection, and intestinal ischemia play vital roles in the pathogenesis of NEC [2]. Vascular dysfunction and inflammation may contribute to the disease [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call