Abstract

Mycoplasma pneumoniae (MP) infection is a common cause of community-acquired pneumonia in children. Furthermore, many children with Mycoplasma pneumoniae pneumonia (MPP) have recurrent wheezing and reduced small airway function after their clinical symptoms have resolved, eventually leading to asthma. MPP can trigger immune disorders and systemic inflammatory responses. Hence, the intestine is the largest immune organ of the body. Therefore, we sought to investigate whether the alteration of intestinal flora is correlated with the development of wheezing in children with MPP. We collected 30 healthy children as group A, 50 children with nonwheezing MPP as group B, and 50 children with wheezing MPP as group C. We found that the percentage of eosinophil cells (EC) was significantly higher in group C than that in group B for routine blood tests and serum inflammatory factors. The serum cytokines, including IL-4, IL-17, TNF-α, and TGF-β, were significantly higher in group C than in group B. In addition, the level of IL-10 was significantly lower in group C than in group B. The distribution characteristics of intestinal flora strains in children with MPP were detected by sequencing of 16S rRNA gene amplicon sequencing. There were differences in the abundance of intestinal flora between children with MPP and healthy children, with lower abundance of Ruminococcus flavefaciens, Clostridium butyricum, Lactobacillus, and Bifidobacterium in the intestine of children with MPP compared to healthy children. The abundance of Ruminococcus flavefaciens and Clostridium butyricum was significantly lower in the intestine of children with wheezing MPP compared to children without wheezing MPP. In the correlation analysis between children with MPP and inflammatory factors, Ruminococcus flavefaciens was found to be negatively correlated with IL-17. Clostridium butyricum was negatively correlated with L-4, IL-17, TNF-α, and TGF-β; however, it positively correlated with IL-10. Thus, it was concluded that alterations in intestinal flora play a crucial role in the immune response to MPP, where a significant decline in intestinal Ruminococcus flavefaciens and Clostridium butyricum leads to an exacerbation of the inflammatory responses, which may promote the development of children with wheezing MPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call