Abstract

The quantum cascade laser provides one potential method for the efficient generation of light from indirect materials such as silicon. While to date electroluminescence results from THz Si/SiGe quantum cascade emitters have shown higher output powers than equivalent III–V emitters, the absence of population inversion within these structures has undermined their potential use for the creation of a laser. Electroluminescence results from Si/SiGe quantum cascade emitters are presented demonstrating intersubband emission from heavy to light holes interwell (diagonal) transitions between 1.2 THz (250 μm) and 1.9 THz (156 μm). Theoretical modeling of the transitions suggests the existence of population inversion within the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call