Abstract

AbstractThis paper presents a novel approach for Fine-Grained Visual Classification (FGVC) by exploring Graph Neural Networks (GNNs) to facilitate high-order feature interactions, with a specific focus on constructing both inter- and intra-region graphs. Unlike previous FGVC techniques that often isolate global and local features, our method combines both features seamlessly during learning via graphs. Inter-region graphs capture long-range dependencies to recognize global patterns, while intra-region graphs delve into finer details within specific regions of an object by exploring high-dimensional convolutional features. A key innovation is the use of shared GNNs with an attention mechanism coupled with the Approximate Personalized Propagation of Neural Predictions (APPNP) message-passing algorithm, enhancing information propagation efficiency for better discriminability and simplifying the model architecture for computational efficiency. Additionally, the introduction of residual connections improves performance and training stability. Comprehensive experiments showcase state-of-the-art results on benchmark FGVC datasets, affirming the efficacy of our approach. This work underscores the potential of GNN in modeling high-level feature interactions, distinguishing it from previous FGVC methods that typically focus on singular aspects of feature representation. Our source code is available at https://github.com/Arindam-1991/I2-HOFI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.