Abstract

We perform first-principles GW plus Bethe-Salpeter equation calculations to investigate the photophysics of monolayer hexagonal boron nitride (h-BN), revealing excitons with novel k-space characteristics. The excitonic states forming the first and third peaks in its absorption spectrum are s-like, but those of the second peak are notably p-like, a first finding of strong co-occurrence of bright s-like and bright p-like states in an intrinsic 2D material. Moreover, even though the k-space wave function of these excitonic states are centered at the K and K^{'} valleys as in monolayer transition metal dichalcogenides, the k-space envelope functions of the basis excitons at one valley have significant extents to the basin of the other valley. As a consequence, the optical response of monolayer h-BN exhibits a lack of circular dichroism, as well as a coupling that induces an intervalley mixing between s- and p-like states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.