Abstract

The scattering of electrons out of the upper laser state into indirect valleys in quantum-cascade lasers is demonstrated by investigating the operation of the laser under the influence of magnetic fields up to 45 T. A quantum-cascade laser based on strain-compensated AlAs barriers and In0.73Ga0.27As/InAs wells, emitting with wavelength 3.1 μm, is investigated as a function of magnetic field normal to the surface. Minima in emission power are observed when Landau levels of the upper laser state are brought into resonance with states derived from the indirect valleys, leading to the partial depopulation of the upper laser level. The energy for the indirect valley states is determined to be about 640 meV above the bottom of the In0.73Ga0.27As Γ valley, about 70 meV above the upper laser level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call