Abstract

Interval temporal logics provide a natural framework for temporal reasoning about interval structures over linearly ordered domains, where intervals are taken as the primitive ontological entities. Their computational behavior mainly depends on two parameters: the set of modalities they feature and the linear orders over which they are interpreted. In this paper, we identify all fragments of Halpern and Shoham's interval temporal logic HS with a decidable satisfiability problem over the class of strongly discrete linear orders as well as over its relevant subclasses (the class of finite linear orders, Z, N, and Z−). We classify them in terms of both their relative expressive power and their complexity, which ranges from NP-completeness to non-primitive recursiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.