Abstract

Electricity load prediction is of great significance to the development of the power market and stable operation of power systems. In recent years, scholars in this field have only considered point forecasting, which ignores the inevitable prediction bias and uncertain information. To fill this gap, this study proposes an interval prediction system consisting of an advanced data reconstruction strategy, a multi-objective optimization algorithm based on the theory of non-negative constraints, and an outstanding interval forecasting model fitted by the predicted fluctuation characteristics. Moreover, this study theoretically proves that the weight assigned by the optimization algorithm is the Pareto optimal solution. Empirical data with 30 min intervals from Queensland, Australia are selected as samples for research. The results not only demonstrate the superiority of the proposed model but also provide effective technical support for power grid operation and dispatch by quantifying changes in the prediction results caused by uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.