Abstract

Eelgrass beds represent important habitats for marine organisms, but are in decline in many coastal areas around the world. On Cortes Island, British Columbia, Canada, oysters coexist regionally with native eelgrass (Zostera marina L.), but eelgrass is typically absent directly seaward of oyster beds (the “below-oyster cobble zone”). We compared assemblage structure of nekton (fish and swimming macroinvertebrates) and epibenthos (macroinvertebrates and macroalgae) between eelgrass bed and below-oyster habitats. We sampled the intertidal zone on Cortes Island at low tide using two methods: quadrats to enumerate epibenthic macroinvertebrates and macroalgae, and beach seines to enumerate fish and swimming macroinvertebrates. Using multivariate analysis of similarity (ANOSIM), we found that the structure of nektonic and epibenthic assemblages associated with below-oyster cobble zones were significantly different from those in eelgrass-beds. Univariate measures showed that nektonic species richness and abundance were significantly higher in eelgrass beds than in below-oyster cobble habitat, whereas epibenthic species richness and abundance were significantly higher in below-oyster habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.