Abstract
Data demonstrating the effects of biological invaders on microbial communities and microbial processes are scarce, especially in marine environments. Research was conducted at Padilla Bay, Washington, to examine the effect that an invasive intertidal eelgrass, Zostera japonica Aschers & Graebn, has on rates of decomposition, microbial community composition, and the possible implications for associated ecosystem processes in this estuarine environment. A series of observational and experimental studies were conducted in beds of Z. japonica, beds of its native congener, Zostera marina, and mixed eelgrass beds. These studies assessed decomposition of invasive and native eelgrass, enumerated bacterial abundance, and examined sole source carbon usage (SSCU) by microbial assemblages. Z. japonica decomposed more rapidly than its native congener throughout the study period although rates of decomposition were variable. Microbial abundance did not differ among different vegetation compositions although differences in SSCU by microbial assemblages were detected among beds of invasive, native, and mixed eelgrass. These results indicate that this abundant invasive species can accelerate rates of decomposition and alter the associative decomposer community, which may lead to higher carbon and nutrient turnover within Padilla Bay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.