Abstract

Fast intersystem crossing is observed in the S(1)(1)nπ* state of N-heterocyclic aromatic hydrocarbons and carbonyl compounds. It is attributed to spin-orbit coupling with the (3)ππ* state in the same energy region. The strong singlet-triplet mixing was confirmed by large Zeeman splitting of rotational lines in a high-resolution spectrum. For the S(1)(1)ππ* state of aromatic hydrocarbons, the observed Zeeman splitting was found to be considerably small, and intersystem crossing was considered to be minor. These facts are in accordance with El-Sayed's rule, which states spin-orbit coupling is forbidden between the (1)ππ* and (3)ππ* states. The Zeeman splitting of several derivatives was also observed and the substitution effect on the intersystem crossing rate is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.