Abstract

The decomposition reaction of dimethyl-1,2-dioxetanone in dichloromethane was studied by using a DFT approach. The low efficiency of triplet and singlet excited-state formation was rationalised. A charge-transfer process was demonstrated to be involved in the chemiluminescence process. Present and previous results allow us to define an interstate crossing-induced chemiexcitation (ICIC) mechanism for the chemiluminescence of dioxetanones. Charge transfer is needed to reach a transition state, in the vicinity of which direct population of excited states is possible. The chemiexcitation process is then governed by singlet/triplet intersystem crossings. Structural modifications then modify the rate of these crossings and the singlet ground and excited-state interaction, thereby modulating the efficiency of this process and the spin of the resulting products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.