Abstract

Shepherdia rotundifolia Parry (roundleaf buffaloberry), a shrub endemic to the U.S. Colorado Plateau high desert, has aesthetic and drought tolerance qualities desirable for low-water urban landscapes. However, slow growth and too often fatal sensitivity to wet or disturbed soil stymies nursery production and urban landscape use. The goal of this study was to create an interspecific hybrid between the evergreen-xeric S. rotundifolia and its widely adapted, fast-growing, deciduous relative Shepherdia argentea (silver buffaloberry) distributed in western North America riparian habitats. Genetics and leaf morphology of the resulting S. argentea × S. rotundifolia hybrid are described and compared with the parents, as well as hybrid gas exchange as a reasonable proxy for growth rate and potential tolerance of poor soil. Hybrid genotypes were heterogenous, but contained an intermediate and equal contribution of alleles from genetically heterogenous parent populations. Leaf morphology traits were also intermediate between both parents. Aesthetic leaf qualities (silver-blue color and revolute margins) sought from S. rotundifolia were conserved in all offspring. However, gas exchange responses varied widely between the two surviving hybrids. Both hybrids showed greater tolerance of wet, fertile substrate—and promise for use in low-water landscapes—than S. rotundifolia. However, one hybrid conserved faster growth, and by inference possibly greater tolerance of wet or disturbed soil, from S. argentea, while the opposite was observed in the second hybrid. Following botanical nomenclature, we named this hybrid Shepherdia ×utahensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call