Abstract

Considering the increasing uses of ionic liquids (ILs) in various industrial processes and chemical engineering operations, a complete assessment of their hazardous profile is essential. In the absence of adequate experimental data, in silico modeling might be helpful in filling data gaps for the toxicity of ILs towards various ecological indicator organisms. Using the rationale of taxonomic relatedness, the development of predictive quantitative structure–toxicity–toxicity relationship (QSTTR) models allows predicting the toxicity of ILs to a particular species using available experimental toxicity data towards a different species. Such studies may employ, along with the available experimental toxicity data to a species, molecular structure features and physicochemical properties of chemicals as independent variables for prediction of the toxicity profile against another closely related species. A few such interspecies toxicity correlation models have been reported in the literature for diverse chemicals in general, but this approach has been rarely applied to the class of ionic liquids. The present study involves the use of IL toxicity data towards the bacteria Vibrio fischeri along with molecular structure derived information or computational descriptors like extended topochemical atom (ETA) indices, quantum topological molecular similarity (QTMS) descriptors and computed lipophilicity measure (logk0) for the interspecies exploration of the toxicity data towards green algae S. vacuolatus and crustacea Daphnia magna, separately. This modeling study has been performed in accordance with the OECD guidelines. Finally, predictions for a true external set have been performed to fill the data gap of toxicity towards daphnids and algae using the Vibrio toxicity data and molecular structure attributes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call