Abstract

Predictive toxicology using chemometric tools can be very useful in order to fill the data gaps for ionic liquids (ILs) with limited available experimental toxicity information, in view of their growing industrial uses. Though originally promoted as green chemicals, ILs have now been shown to possess considerable toxicity against different ecological endpoints. Against this background, quantitative structure-activity relationship (QSAR) models have been developed here for the toxicity of ILs against the green algae Scenedesmus vacuolatus using computed descriptors with definite physicochemical meaning. The final models emerged from E-state indices, extended topochemical atom (ETA) indices and quantum topological molecular similarity (QTMS) indices. The developed partial least squares models support the established mechanism of toxicity of ionic liquids in terms of a surfactant action of cations and chaotropic action of anions. The models have been developed within the guidelines of the Organization of Economic Co-operation and Development (OECD) for regulatory QSAR models, and they have been validated both internally and externally using multiple strategies and also tested for applicability domain. A preliminary attempt has also been made, for the first time, to develop interspecies quantitative toxicity-toxicity relationship (QTTR) models for the algal toxicity of ILs with Daphnia toxicity, which should be interesting while predicting toxicity of ILs for an endpoint when the data for the other are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call