Abstract
LetA be a finite nonempty family of nonempty disjoint closed and bounded sets in a Banach spaceE which is either separable and the conjugate of some Banach spaceX (i.e.E=X*) or, reflexive and locally uniformly convex. IfC denotes the weak*-closed convex hull of ∪ {A:A ∈A} then the set of points inE ∼C through which there is no hyperplane intersecting exactly one member ofA is discrete (or empty).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.