Abstract

AbstractWe construct a nonseparable Banach space $\mathcal {X}$ (actually, of density continuum) such that any uncountable subset $\mathcal {Y}$ of the unit sphere of $\mathcal {X}$ contains uncountably many points distant by less than $1$ (in fact, by less then $1-\varepsilon $ for some $\varepsilon>0$ ). This solves in the negative the central problem of the search for a nonseparable version of Kottman’s theorem which so far has produced many deep positive results for special classes of Banach spaces and has related the global properties of the spaces to the distances between points of uncountable subsets of the unit sphere. The property of our space is strong enough to imply that it contains neither an uncountable Auerbach system nor an uncountable equilateral set. The space is a strictly convex renorming of the Johnson–Lindenstrauss space induced by an $\mathbb {R}$ -embeddable almost disjoint family of subsets of $\mathbb {N}$ . We also show that this special feature of the almost disjoint family is essential to obtain the above properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.