Abstract

The study was conducted to determine the long-term impact of different land uses on carbon sequestration, soil fertility, and microbial indices and to establish their interrelationship in a light-textured hyperthermic Udic Ustochrept. Soil samples were collected from existing land-use systems of (1) Eucalyptus tereticornis, (2) Terminalia chebula, (3) Acacia nilotica, (4) Leucaena leucocephala, (5) Embilica officinalis, (6) Zizyphus spp., and (7) maize–wheat rotation from depths of 0–15, 15–30, and 30–45 cm and examined for pH; organic carbon (OC); electrical conductivity (EC); available nitrogen (N), phosphorus (P), and potassium (K); micronutrients; microbial biomass carbon (MBC); microbial biomass nitrogen (MBN); and microbial biomass phosphorus (MBP). High-density plantations of Eucalyptus teriticornis had a greater potential in sequestering aboveground carbon (472.37 Mg ha−1), compared to widely spaced trees of Acacia nilotica (376.05 Mg ha−1). Eucalyptus teriticornis exhibited the greatest impact in increasing soil OC in all depths, followed by Acaccia nilotica and Terminalia chebula, and the lowest was in agriculture (0.778, 0.749, 0.590, and 0.471%, respectively, in surface soil). Available zinc and iron contents were greatest under Eucalyptus tereticornis, followed by Acacia nilotica, Zizyphus mauritiana, Embilica officinalis, Terminalia chebula, and Leucaena leucocephala. The MBC and MBN were greatest in Eucalyptus tereticornis, followed by Acacia nilotica, and lowest in agriculture. Correlation matrix revealed significant and positive relationships between carbon sequestered with OC, MBC, MBN, and MBP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call