Abstract

Meeting the challenges of the world’s oceans development, especially in the Arctic regions, in the first place, it is absolutely necessary to build a modern fleet, nuclear icebreakers, Arctic cargo ships, gas carriers, stationary and floating drilling structures and offshore platforms, underwater complexes that provide oil and gas production on the continental shelf; to reconstruct coastal areas; and to build harbors, that require a large number of cold-resistant high-strength weldable steels to reduce metal consumption in engineering structures. That’s why the Russian government motivates construction of the shipbuilding complex “Zvezda” situated in the Far East (which is the largest national and world-wide shipyard). Vyborg Dockyard and Severnaya Verf (Northern Shipyard) in St. Petersburg are being modernized. The creation of new steels with minimum alloying and unified chemical composition to enable the development of more economical technologies for welding and assembling such unique vessels and marine technical structures is an urgent task. The paper deals with the issues of formation of the low-alloy steel structure with variable nickel content during the plastic deformation process. The specimens taken from three experimental melts of different chemical composition with varying nickel content (0.5 %, 1 %, and 2 %) were investigated. Selected steels were tested by means of Gleeble 3800 imitating thermomechanical treatment with various temperature parameters of the finishing rolling stage and accelerated cooling up to the predetermined temperature. Mechanical properties were determined. The paper presents results of structure examination by means of optical metallography as well as crystallographic analysis of microstructure using scanning electron microscopy (EBSD analysis). It is demonstrated that the scheme of thermal-deformation effect should depend on the alloying level, i.e. the final structure of steel (ferrite-bainitic, bainitic or martensite-bainitic). The most effective strengthening in steels with a ferrite-bainitic structure is obtained by formation of low-angle boundaries in the α-phase during the plastic deformation. Steels with bainitic structure are not likely to be significantly strengthened by changing of deformation temperature parameters at the finishing stage of thermomechanical treatment. Conditions providing the formation of additional low-angle boundaries were not found in martensite-bainitic steels, which might be the subsequent effect of polymorphic transformation by shearing.

Highlights

  • The creation of new steels with minimum alloying and unified chemical composition to enable the development of more economical technologies for welding and assembling such unique vessels and marine technical structures is an urgent task

  • The paper deals with the issues of formation of the low-alloy steel structure with variable nickel content during the plastic deformation process

  • The specimens taken from three experimental melts of different chemical composition with varying nickel content (0.5 %, 1 %, and 2 %) were investigated

Read more

Summary

Металлургические технологии

ВЗАИМОСВЯЗЬ УРОВНЯ ЛЕГИРОВАНИЯ, СТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ ВЫСОКОПРОЧНЫХ СТАЛЕЙ. Стали с бейнитной структурой не склонны к значительному упрочнению за счет изменения температурных параметров деформации на чистовой стадии термомеханической обработки, а в мартенсито-бейнитных сталях не выявлено режимов, обеспечивающих создание дополнительных малоугловых границ, что, возможно, связано с последующим воздействием полиморфного превращения по сдвиговому механизму. В связи с этим, можно полагать, что уровень легирования высокопрочных сталей возможно ограничивать с целью снижения стоимости и, естественно, повышения свариваемости за счет снижения углеродного эквивалента Сэкв , а вклад легирующих элементов компенсировать путем применения специальных высокоточных технологических воздействий, обеспечивая высокий уровень физико-механических свойств и сопротивление хрупким и вязким разрушениям. Исследования проводились на образцах от трех опытных плавок низкоуглеродистой хромоникелевой стали разного химического состава, заметно отличающихся содержанием никеля (0,52, 1,08 и 1,97 %) Температура печей перед посадкой заготовок для нагрева под прокатку составляла не ниже 500 °С, время предварительной выдержки при этой температуре – не менее 30 мин. Температура окончания охлаж­ дения выбиралась с целью завершения этого процесса в области бейнитного превращения [7, 9]

Стадии прокатки Черновая
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call