Abstract
We interpret recent measurements of time-varying interference fringe intensities observed between rising bubbles (diameter 15−120 μm) and a horizontal hydrophilic titania plate to determine the rate of approach of such bubbles to the surface. The bubbles remain spherical because of high Laplace pressures and small buoyancy forces so the approach velocity remains in the Stokes flow regime. The rate of approach of the bubble to the titania plate is controlled by buoyancy force and surface forces such as van der Waals and electric double layer interactions together with a hydrodynamic force arising from the drainage of the thin water film between the bubble and the titania surface. The dynamics are found to be consistent with the no-slip hydrodynamic boundary condition at the surface of the bubble and at the titania plate. However, far from the titania plate the terminal velocities of the rising bubbles suggests that the bubble surfaces are fully mobile with zero tangential stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.